Contact Project Developer Ashish D. Tiwari [astiwz@gmail.com]
Download Synopsis Abstract
Websites ASP.NET BE-Engineering(CO/IT) ME-Engineering(CO/IT) BCS MCS BCA MCA MCM BSC Computer/IT MSC Computer/IT Diploma (CO/IT) IEEE-2016

K-Subspaces Quantization for Approximate Nearest Neighbor Search

Approximate Nearest Neighbor (ANN) search has become a popular approach for performing fast and efficient retrieval on very large-scale datasets in recent years
Abstract-Synopsis-Documentation

K-Subspaces Quantization for Approximate Nearest Neighbor Search

Approximate Nearest Neighbor (ANN) search has become a popular approach for performing fast and efficient retrieval on very large-scale datasets in recent years, as the size and dimension of data grow continuously. In this paper, we propose a novel vector quantization method for ANN search which enables faster and more accurate retrieval on publicly available datasets. We define vector quantization as a multiple affine subspace learning problem and explore the quantization centroids on multiple affine subspaces. We propose an iterative approach to minimize the quantization error in order to create a novel quantization scheme, which outperforms the state-of-the-art algorithms. The computational cost of our method is also comparable to that of the competing methods

Comment is Only Available for registered users! Create Account or Login Now!